Publications 2011

Spatial Dependency of Action Simulation

 

In this study we investigated the spatial dependency of action simulation. From previous research in the field of single-cell recordings, grasping studies and from crossmodal extinction tasks, it is known that our surrounding space can be divided into a peripersonal space and extrapersonal space. These two spaces are functionally different at both the behavioral and neuronal level. The peripersonal space can be seen as an action space which is limited to the area in which we can grasp objects without moving the object or ourselves. The extrapersonal space is the space beyond the peripersonal space. Objects situated within peripersonal space are mapped onto an egocentric reference frame. This mapping is thought to be accomplished by action simulation. To provide direct evidence of the embodied nature of this simulated motor act we performed two experiments, in which we used two mental rotation tasks, one with stimuli of hands and one with stimuli of graspable objects. Stimuli were presented in both, peri- and extrapersonal space. The results showed increased reaction times for biomechanically difficult to adopt postures compared to more easy to adopt postures for both hand and graspable object stimuli. Importantly, this difference was only present for stimuli presented in peripersonal space but not for the stimuli presented in extrapersonal space. These results extend previous behavioral findings on the functional distinction between peripersonal- and extrapersonal space by providing direct evidence for the spatial dependency of the use of action simulation. Furthermore, these results strengthen the hypothesis that objects situated within the peripersonal space are mapped onto an egocentric reference frame by action simulation.